Correction de l'interrogation nº 1

Exercice 1

- 1. La suite de variables aléatoires $\left(\frac{X_2}{n}\right)$ converge presque sûrement vers 0 et (X_1) converge bien sûr presque sûrement vers X_1 donc $X_1 + \frac{X_2}{n}$ converge presque sûrement vers X_1 . En particulier, puisque la convergence presque sure implique la convergence en loi, $X_1 + \frac{X_2}{n}$ converge en loi vers X_1 .
- **2.** Soit $n \geq 1$. Notons ν la loi uniforme sur [0,1]. Comme X_1 et X_2 sont indépendantes et de loi ν , la loi de (X_1,X_2) est $\nu \otimes \nu$. Comme X_n et X_{n+1} sont indépendantes et de loi ν , la loi de (X_n,X_{n+1}) est $\nu \otimes \nu$, elle aussi. En particulier, (X_1,X_2) et (X_n,X_{n+1}) ont même loi.
- **3.** Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction continue bornée. Il s'agit de montrer que $\mathbf{E}\left[f\left(X_n+\frac{X_{n+1}}{n}\right)\right]$ converge vers $\mathbf{E}\left[f\left(X_1\right)\right]$. Pour tout $n\geq 1$, ayant vu en question 2 que (X_n,X_{n+1}) et (X_1,X_2) ont même loi, on a

$$\mathbf{E}\left[f\left(X_n + \frac{X_{n+1}}{n}\right)\right] = \mathbf{E}\left[f\left(X_1 + \frac{X_2}{n}\right)\right].$$

Il suffit donc de montrer que $\mathbf{E}\left[f\left(X_1+\frac{X_2}{n}\right)\right]$ converge vers $\mathbf{E}\left[f\left(X_1\right)\right]$, ce qui est bien le cas puisque la question 1 garantit la convergence en loi de $X_1+\frac{X_2}{n}$ vers X_1 . D'où le résultat souhaité.

Exercice 2

- 1. Cela est dû à la linéarité de l'espérance conditionnelle. Il s'agit pour cela de vérifier que les variables aléatoires $XZ\,\mathbf{1}_{\{Z\geq 0\}}$ et $\sin(XY)$ sont intégrables. La première est intégrable en tant que produit de variables aléatoires intégrables in-dépendantes $(Z\,\mathbf{1}_{\{Z\geq 0\}})$ est bien intégrable car $|Z\,\mathbf{1}_{\{Z\geq 0\}}|\leq |Z|$ et Z est intégrable). La seconde est intégrable car la fonction sinus est bornée.
- **2.** Comme X est $\sigma(X,Y)$ -mesurable et puisque $Z \mathbf{1}_{\{Z \geq 0\}}$ est $\sigma(Z)$ -mesurable donc indépendante de $\sigma(X,Y)$, on a $\mathbf{E}[XZ \mathbf{1}_{\{Z \geq 0\}} \mid X,Y] = X\mathbf{E}[Z \mathbf{1}_{\{Z \geq 0\}}]$. Ayant $\mathbf{E}[Z \mathbf{1}_{\{Z \geq 0\}}] = \frac{1}{\sqrt{2\pi}} \int_0^\infty x e^{-x^2/2} \, \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \left[-e^{-x^2/2} \right]_{x=0}^\infty = \frac{1}{\sqrt{2\pi}}$, on obtient

$$\mathbf{E}[XZ \, \mathbf{1}_{\{Z \ge 0\}} \, | \, X, Y] = \frac{X}{\sqrt{2\pi}}.$$

Comme $\sin(XY)$ est $\sigma(X,Y)$ -mesurable, on a $\mathbf{E}[\sin(XY) \mid X,Y] = \sin(XY)$. Par conséquent, $\mathbf{E}[U \mid X,Y]$ vaut $\frac{X}{\sqrt{2\pi}} + \sin(XY)$.

3. Comme X est $\sigma(X)$ -mesurable donc indépendante de Z et puisque Z $\mathbf{1}_{\{Z \geq 0\}}$ est $\sigma(Z)$ -mesurable, on a $\mathbf{E}[XZ \mathbf{1}_{\{Z \geq 0\}} \mid Z] = Z \mathbf{1}_{\{Z \geq 0\}} \mathbf{E}[X]$, qui vaut 0 puisque $\mathbf{E}[X] = 0$. Comme (X, Y) est indépendante de Z, on a $\mathbf{E}[\sin(XY) \mid Z] = \mathbf{E}[\sin(XY)]$,

qui vaut $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sin(xy) e^{-(x^2+y^2)/2} \, \mathrm{d}x \, \mathrm{d}y$ par indépendance de X et Y. Un changement de variable y' = -y et l'imparité du sinus révèlent que cette intégrale double est égale à son opposé, donc nulle. Ainsi, $\mathbf{E}[U \mid Z]$ vaut presque surement θ .

4. Le même argument qu'en question 2 donne $\mathbf{E}[XZ\,\mathbf{1}_{\{Z\geq 0\}}\,|\,X]=\frac{X}{\sqrt{2\pi}}$. Comme X et Y sont indépendantes, si on pose $F:x\longmapsto \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\sin(xy)e^{-y^2/2}\,\mathrm{d}y$, alors $\mathbf{E}[\sin(XY)\,|\,X]$ vaut F(X) presque sûrement. Un changement de variable y'=-y révèle que F est la fonction nulle. $Donc\,\mathbf{E}[U\,|\,X]$ vaut $\frac{X}{\sqrt{2\pi}}$ presque sûrement.

Exercice 3

1. On veut appliquer la loi du 0-1 de Kolmogoroff. Comme les variables aléatoires Y_n sont *indépendantes*, il suffit de montrer que l'événement $\{S=\infty\}$ appartient à la tribu asymptotique.

Soit $n_0 \geq 1$. Il s'agit de montrer que $\{S = \infty\}$ appartient à la tribu $\mathscr{G}_{n_0} := \sigma(Y_{n_0}, Y_{n_0+1}, \dots)$. On observe pour cela que $\{S = \infty\} = \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n_0} \{Y_k \geq n\}$. On peut dans cette écriture prendre k plus grand que n_0 pour la raison suivante. Si on pose $S_{< n_0} = \sup\{Y_k \; k < n_0\}$ et $S_{\geq n_0} = \sup\{Y_k \; k \geq n_0\}$, on a $S = \max(S_{< n_0}, S_{\geq n_0})$. Or $S_{< n_0}$ est toujours fini comme sup d'un ensemble fini donc la condition « $S = \infty$ » équivaut à « $S_{\geq n_0} = \infty$ ». On conclut en remarquant tout d'abord que, dans l'écriture $\{S = \infty\} = \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n_0} \{Y_k \geq n\}$, chaque $\{Y_k \geq n\}$ appartient à \mathscr{G}_{n_0} , puis que la tribu \mathscr{G}_{n_0} est stable par union dénombrable et par intersection dénombrable.

2. Les deux conditions sont compatibles. Il suffit de prendre (Y_n) une suite de variables aléatoires indépendantes telles que, pour tout $n \geq 1$, on ait $\mathbf{P}(Y_n = n) = \frac{1}{n}$ et $\mathbf{P}(Y_n = 0) = 1 - \frac{1}{n}$. Puisque la série harmonique diverge et comme les variables aléatoires Y_n sont indépendantes, le lemme de Borel-Cantelli indépendant appliqué aux événements $\{Y_n = n\}$ garantit que presque sûrement, il y a une infinité de valeurs de n pour lesquelles Y_n est égal à n. En particulier, on a presque sûrement $S = \infty$. Pourtant, $\mathbf{P}(Y_n \neq 0)$ converge vers 0, ce qui garantit que Y_n converge en probabilité vers 0.

Commentaires additionnels

- 1 (1) Plus précisément, l'égalité $\mathbf{E}\left[f\left(X_n+\frac{X_{n+1}}{n}\right)\right]=\mathbf{E}\left[f\left(X_1+\frac{X_2}{n}\right)\right]$ se voit comme suit. Par théorème de transfert appliqué à $(x,y)\longmapsto f\left(x+\frac{y}{n}\right)$ et à la variable aléatoire (X_n,X_{n+1}) , l'espérance de gauche vaut $\int_{[0,1]^2}f(x,y)\,\mathrm{d}\mu(x,y)$, où μ désigne la loi de (X_n,X_{n+1}) qui est aussi la loi de (X_1,X_2) . Le même argument appliqué à la même fonction mais à la variable aléatoire (X_1,X_2) révèle que l'espérance de droite est égale à cette même intégrale. En particulier, les deux espérances sont égales.
- **2 (2)** La variable aléatoire $\sin(XY)$ est bien $\sigma(X,Y)$ -mesurable. En effet, X et Y sont $\sigma(X,Y)$ -mesurables donc XY l'est également. Comme la fonction sinus est continue donc mesurable, $\sin(XY)$ est elle aussi $\sigma(X,Y)$ -mesurable cela s'obtient par composition dans le diagramme $(\Omega,\sigma(X,Y)) \xrightarrow[XY]{} (\mathbf{R},\mathcal{B}(\mathbf{R})) \xrightarrow[\sin]{} (\mathbf{R},\mathcal{B}(\mathbf{R})).$
- 3 (2) Pour penser à cette construction, il s'agissait de revisiter la gymnastique pratiquée dans l'exercice 0.10 voir notamment sa question 4.